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Abstract 
Some theorems  are given which show when a curvature tensor is the  curvature o f  pseudo- 
metric and when this pseudo-metr ic  is unique.  These  results  no t  only contr ibute  to the  
exact solut ion work done previously b u t  also throw some light on Maeh's  principle in 
general relativity. 

1. Introduction 

The question of when solutions to Einstein's equations exist and whether they 
are unique if they do exist is of fundamental interest in general relativity. The 
first approach to this problem has been to translate Einstein's equations into 
a Cauchy problem in differentia1 equations. This method cannot answer the 
question of when a given tensor is the stress-energy tensor of some space-time. 

Recently Schmidt (1973) has taken a more geometrical approach to the 
problem and has arrived at a first step in its solution. He found a necessary 
and sufficient condition for a connection ~ to be the connection of a Lorentz 
metric. In the case when this condition is satisfied he gives an explicit way of 
constructing the metric from the connection. Thus he solves the existence 
problem completely. The only unfortunate aspect of his construction is that 
it still necessitates the solution of differential equations, namely the equations 
of parallel transport in the connection. He also solves the uniqueness problem 
by finding a stronger condition which is necessary and sufficient for the 
Lorentz metric to be unique to within a constant multiple. Thus, he has com- 
pletely solved the problem of existence and uniqueness as far as the gravitational 
forces ~ is concerned. 

We have made a further step towards an existence and uniqueness theorem 
concerning stress-energy tensor by dealing with the gravitational fields R[ik 
(Ihrig, 1975a). We showed that under a certain condition on the R}lk the gij are 
uniquely determined to within a conformat factor by the R~jk. Moreover, one 
can also actually construct an explicit general formula giving the gi] in terms 
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of the Rli k. This formula involves only algebraic combinations of the R~k, 
and no differential equations need be solved as with Schmidt's procedure. Thus, 
given the R~k , the only unknown factor left is the conformal factor. 

Here we would like to consider the uniqueness of the conformat factor. 
We find in Section 2 that the conformal factor is also unique as long as the 
Riemann tensor satisfies a slightly stronger condition than needed before. 
This result has two disadvantages, however. One is that the uniqueness theorem 
is not constructive. This means one cannot write down the conformal factor 
explicitly as a function of the R~k, but the situation is simplified in that one 
can find the conformal factor as a solution to a first order linear differential 
equation. Thus, this theorem together with Ihrig (1975a) seems to provide 
fairly well for the complete solution of the gij in terms of the R1jk anyway. 
The second disadvantage is that the extra condition needed for the uniqueness 
does not have a clear geometric interpretation. This is not much of a problem 
in terms of actual computation since the condition holds for almost every 
space-time (the condition is generic) but the situation is unsatisfactory in so 
far as one is not certain what kind of physical assumption the condition reflects. 
Thus in Section 3 we give another uniqueness theorem which involves the 
holonomy group instead of R~k but does not use this extra assumption. It is 
this theorem that shows what geometry is involved in determining the conformal 
factor and serves to show why the technique used in Section 2 would be 
expected to work. 

Besides the uniqueness theorems in Section 2 and Section 3 we find that 
because the uniqueness theorems of Section 2 and Ihrig (1975a) are so explicit 
we can give an easy existence theorem. The theorem gives a necessary and 
sufficient condition for a given tensor R~k to be the curvature of some Lorentz 
metric as long as the given R~jg satisfies two generic conditions. Since some 
notation will be needed from Ihrig (1975a) in this theorem, this notation to- 
gether with a key result is given in the Appendix. This will serve to make this 
article relatively self-contained. 

In Section 4 we would like to take some time to discuss the physical signifi- 
cance of these results. It is perhaps fairly clear that the results are of interest 
to physicists from the point of view of computing exact solutions and to 
mathematicians from the point of view of finding when tensors are curvatures 
of a connection (these results hold for Riemannian metrics as well as Lorentz 
metrics). What is perhaps not so clear is that these theorems play a role in the 
conceptual foundations of general relativity. They are in fact related to the 
problem of making Mach's principle compatible with relativity. We discuss 
this problem in Section 4. 

2. The Conformal Factor in Terms of  R[ik 

First we give a theorem that shows when the conformal factor is determined 
in terms of the Riemann tensor. We start with the definition we need. 

[2.1] Definition. Let R be a rank (3, 1) tensor and le tR be antisymmetric as 
in [Definition 5.1]. We call R broad at m if for every vector v at m there are 



T H E  U N I Q U E N E S S  O F  gi] IN T E R M S  O F  R~]I¢ 25 

tWO vectors w and x at m such that R ( w ,  x ) v  does not tie in the plane genera- 
ted by w andx ,  that is 

(R(w, x)~, w, x) 

is linearly independent. 
This condition does not have any clear geometric content; but seems to be 

a fairly reasonable assumption to make on a space-time. 
We are now ready to prove our theorem. 

[2.2] Theorem. Let D i m ( M ) / >  4. Let R be the Riemann tensor of  a pseudo- 
metric. Suppose R is broad and total [see 5.1] at every point inM. Then this 
pseudo-metric is the unique pseudo-metric (to within a constant conformal 
factor) that has R as its curvature. Also any constant times this pseudometric 
has R as its curvature. 

P r o o f  The last statement is easy to see since i fVg = 0 thenV(kg) = k V g  = O, 
a n d g  has the same connection as kg. 

We now suppose we have two pseudo-metrics g and ~ with the same curva- 
ture R. Since R is total we know from [5.2] that 

= e2ag 

where a is a function from M to R. We must only show a is a constant. To do 
this we shall use the Bianchi identities (see Section 5 for notation): 

l t + R [ k n  = 0 (2.1) Ri,  jkl ln + Ri ,  njUg , IIj 

R~, j k + o l  _t. D1  -- ~j,  ki ~ l , k ,  ij - 0 (2.2) 

The first equation involves the covariant derivative of the given metric. We 
use I'//](f40) to indicate the connection derived from gq(gi]). Rewriting (2.1) 
we find 

t + R  t + R  l. t p p t = _ CinRp,  j k  0 Ri ,  j k ln  nj[k b k n l j + C p n R ~ , / k  
l p p. 1 + c ~ R ~ , . j  - cf~n~, nj + % n f ~ .  - C,~R~, ~ (2.3) 

where Cj,, may be taken to be either rj,, or r/,,. Now we observe that 

rj~ - rjk = ~ j s ~  i + ~ k a /  - ~L.g"'gjk (2.4) 

~t rj~ r / x - '  - - D)k. Then subtracting the previous equation when C = 17 from 
the same equation when C = P we find 

-- l-~lnZXp, jk  .UpklXhn j D ~ k R l ,  nj 

+ D~jRg~.  - z ~ R ~ , ~ .  (2.5) 
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Using our expression for D in terms of  a and gil we find 

: n n i  "~ + . ~ n i  ) ~)l t (Otln Rn i  kin) 0 = ~m l (Otlnl~ , j k )  5k  l I.alnl~ ,m j  + 

i l pn + i l p i l 
+ ~m (a lpRn ,  j k g  ) ~k (a lpRn ,  mjg n ) + ~j ( a tpRn ,  king rap) 

(2.6) 

This equation will hold in any coordinate system. We will now pick a particular 
coordinate system. Suppose a is not  constant. Then there is a point m o inM 
such that da ~ 0 at m o. T h u s  alpg pn will be a nonzero vector at m 0. We now 
use [2.1] " pn - .  • . by taking v = alpg . Since R is broad there is a w and x such that 

(R(w,  x)v ,  w, x }  (2.7) 

is independent. Thus there is a coordinate system in which 

~x--- i = w, ~x 2= x, ax 3 = R(w, x)v (see footnote 1) (2.8) 

Now in this coordinate system we will use the previous equation with 

j = l  k = 2  l = 3  r e = i = 4  (2.9) 

We find 

but 

0 = alpgpnRan, 21 (2.10) 

ax-- 5 = R , v = alpgpnRqn, 21 ~X q 

which implies aipgpnR3n, 2t = 1 v ~ O. This gives the desired contradiction. 

(2.11) 

[2.3] Corollary• Let R be as in [2.2]. There is a unique pseudo-metric con- 
nection which has R as its curvature. 

In order to illustrate the necessity of  another condition than totality in 
[2.2] we give the following example: 

[2.4] Example. Let dsl 2 = e 2x~ (dx °~ - dx 12) and ds22 = 1/x ° e2Xl(dx°~ - 
dxl2). Then dsl 2 and ds22 have the same Riemann curvature and this curvature 

. l 
tensor is total (Ro, lo = 2). 

Having established the uniqueness theorem we may state an existence 
theorem which is an easy consequence of  this uniqueness theorem. First, a 
technical lemma will be needed for the sake of  mathematical completeness. 

• 1 We need to know that l fRi jk  are smooth functions then G(R~jk)(see [5.3] ) 
vail be smooth. This is not obvious from the formula for G since [5.2] (b) is 
not smooth. 

1 Given a set o f f  independent  vectors v i at.a poin t  m 0 expand this basis vj o f  Tmo(M). 
Define the  local chart  4~: R n ~ M  by 4~(h I) = exPra ° (Nhiv]). In  this chart  v i = 8/ax i. 
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[2.5] Lemma. IfR[,jk are smooth functions then so are the G(R~, jk). 
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Proof. t The distribution D generated by v~ (defined in [5.2] (e)) is smooth if 
the Ri, jk are smooth. This is a distribution taking a point in space-time into 
an a-1 dimensional subspace of an a dimensional normed vector space ([5.2] 
(f)). Since D is smooth then D t = {v/(v, D) = 0} will be smooth, and so D l C~ 
{v/(v, v) = 1 } will be also smooth. Now (see [5.2] ) 

D l C~ (v/(v, v) = 1 } = (+-w/(w, W) 1/2 } (2.12) 

so that w/(w, w) t/2 will be a smooth function of R/,jx in any simply connected 
region of  M. Since smoothness is a local concept w/(w, w)l/2 will be smooth. 
Thus the projections 

Go(R ) = (w/(w, w) 1/2, xi]) (2.13) 

will be smooth functions. 
Now for some notation. 

[2.6] Definition. Let R be a rank (3, 1) tensnr and let R be antisymmetric as in 
[5.1]. Suppose G(R) is a pseudo-metric. Let a be a real valued function on the 
manifold. Define 

- R  1 (1)P(R~,Ik)- i, jkln +R],njtk +R[,knlj 
p I 1 p + t ' ~ P D l  (2) F(a, R) = -CCnRp/x + C~nRp,lk - GkRi,  n] '-'i~:~'p, nj -- C¢]Rgkn + 

p l + C~Rp, kn 

where C]e =Pjtc + al/6k i + a l ~ 5 / -  alngnigqk and Fj/x is the connection associa- 
ted with G(R) considered as a pseudo-metric. 

Notice F(a ,  R) = P(R) is a linear equation in ~. This equation is in fact the 
bianchi equations for the conformal factor e 2~ that must multiply G(R) in 
order to obtain a pseudo-metric with curvature R. Now we present our theorem. 

[2.7] Theorem. Let R be a rank (3, 1) tensor and let R be antisymmetric as 
in [5.1 ]. Suppose R is both  total and broad ([5.1 ] and [2.1 ] ) and dim M >/4. 
Then R is the curvature tensor of  a pseudo-metric of  a given signature s if and 
only if 

(a) G(R) has signature s. 
(b) The linear equation (see [2.61 ) 

F(~, R) = e(R) 

has a solution for a. 

(c) Riem ( e ~ G ( R ) )  = R 
where Riem (pseudo-metric) is the Riemann curvature of that pseudo- 
metric. 
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Proof. Suppose R is the curvature of a pseudo-metric g. (a) must hold since 
G(R) is conformally related to g of the proper signature [5.2]. As for (b) we 
find in the proof of [2.2] that F(a, R) = P(R) is just the bianchi identity o fg  
if 

g = e2~G(R) 

Again such an a exists by [5.2]. Now (c) is only the statement thatg has R 
for its curvature as we assumed. 

Now let us assume (a), (b), (c) hold. First of all G(R) will be a smooth 
symmetric tensor by [2.5] (symmetry follows from the definition of G(R)). 
(a) assures us that G(R) will be a pseudo-metric. (c) says that R is the curvature 
of e2aG(R) which says that e2C~G(R) is the desired pseudo-metric. 

[2.7] reduces the existence problem of finding a g with a given curvature 
to finding the solution to a given system of linear equations. If such a solution 
does not exist, the g cannot exist. If a solution does exist then g will exist as 
tong as the consistency equation [2.7] (c) is satisfied. This equation involves 
only the R~k once a is known. Thus the problem of existence is completely 
solved once one can sotve [2.7] (b). 

3. The Conformal Factor in Terms of the Hotonomy Group 

In this Section we will show that information about the holonomy group 
will completely determine the conformal factor. The proof will be more 
geometric in nature and will serve to explain why the proof of [2.2] involved 
only the connection and not the metric, The holonomy group and the Riemann 
Curvature are very closely related so that the results of this Section are con- 
nected to those of Section 2. However the techniques are apparently quite 
different. Thus this Section presents a different side to the uniqueness problem. 

We will start the Section by establishing some notation. 

[3.1] Notation. Let g be a pseudo-metric on Mand 3' a path inM from 7(0) to 
~(1). 
(a) Denote by .rT the map 

,rT:T~,(o)(M) ~ T~(1)(M) 

where ,rT(v) is the parallel transport of v along 3'. 
(b) Let.L'°m = {3'/3' is a closed path from m to m (i.e. 3'(0) = 3"(I) = m) and 3' 
is null homotopic } 
where m E M. 
(c) Let ~rn denote the identity component of the holonomy group at m, i.e. 

(d) Denote by H the map 

H-" aem -~m 

~ )  = ~ T  
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Now that  we have the necessary notation for parallel transport and holonomy 
we just need some notation for how to combine paths together. 

[3.2] Notation. Let 3 ' /be a path f rom 3'i(0) to 3`i(1) for i = 1, 2. 
(a) I f 7 1 ( i )  = 3'2(0) then define 3`2"3`1 to be the path created by first following 
3`1 and then 3'2, i.e. 

(3`1(2t), 0 < t <-<~ 

72"71(t)  = ~ ~ 3 ' 2 ( 2 t -  1), ~ ~<t~< 1 

Note 

72"3`1(0) -- 3`1(0), 3`2"3`1(1) = 3`2(1) 

(b) Define 71 to be the path obtained by going backwards along 3'1 from 3,t(1) 
to 3' 1(0), i.e. 

71( t ) = 7 1 ( 1  - 0  

Some of  the elementary properties of  parallel transport are as foUows. 

[3.3] Observation. (a) 3'1 *72 T = 71T'r2 T 
(b) ,TT = (TT) -1 

Before giving our theorem we state a well known 1emma from group theory. 
For the sake of  completeness we present a short proof  of  this lemma. 

[3.4] Lemma. Let O(i, j)  be a group that  preserves a nondegenerate i +f  
dimensional form with signature i - / .  Let A be any transformation such that  

A B A  -1 = B for all B E 0(i, j). 

Then A = a /whe re  a is some constant and I is the identity transformation. 

Proof. Extend all transformations which act o n  ~ n  to transformations that  act 
on C n in the natural manner. A must  have a nontrivial eigenspace V correspon- 
cling to eigenvalue a. Now 0(i, j): V ~ V since ff v E V and B E 13(/, j)  we have 

A(~(v)) = B(A (v)) = aB(~) 

and g(v) E V. But the only two subspaces o f t  n fixed by O(i, ]) areC n and 0. 
Thus C n = V which says A = M. a is real since A was real. 

We are now ready to present our theorem. I f  we have two pseudo-metrics 
g and ~ with the same curvature and if that curvature is total then the two 
holonomy groups ~ and ~ will be the same. However the map H and f f m a y  
not be (see [3.1] (d)) as the example [2.3] illustrates. I f H  does equal /1 though,  
then g must equal ft. We show this in the following theorem. 

[3.5] Theorem. Let dim M > 1 and let g and ~ be two pseudo-metrics with the 
same curvature R which is total. I f  H = / t  (see [3.1 ] (d)) then g = k~ where k is 
some constant. 



30 EDWIN IHRIG 

Proof. We start by trying to find a relationship between the two different trans- 
port laws .rT and ~tT" corresponding to g and ft. Let m o be a fixed point and 7 
any path going to a point m. Now if 

a E~mo then 7 * a ' Z / E ~  m 

We have H(a) =/-I(a) and H(7*a*~) = H(7*a*~) 
Thus 

and 

~ T = , T  

using [3.1] (d) and [3.3]. Combining we find 

(~ -~  ~73~/1~ -1 ~T) -~ = ~r  

Now {aT/a E ~o<amo } = Hm o which is all of 0(j, k) since R is total. (R is total 
means the 0(L k) ~- Win [5.1] and W is determined completely in terms of R). 
Thus we may apply [3.4] to the above relation to find that 

~T=a(~/)~ (3.1) 

where a is some constant that depends on 7- We now show that a depends only 
on the end point of  3, which is m. Suppose 71 and 72 go from m 0 to m. Then 

71 *72 E£"ct'mo (3.2) 

so 

(~h T)-1% T= (~/~ ,~-1 3'2 ~" (3.3) 

This leads to 

a(3'2) ~-1 ~= ~ -12  ~ (3.4) 
a(3'l ) v, ~2 7~ 

which gives a('r2)/a(71) = 1 as was desired. Clearly a is a smooth function so 
we find that the parallel transports are 'conformally related.' The rest of the 
proof just establishes the fact that conformally related metrics cannot have 
conformally related transport laws. Observe that g and ~ must be conformally 
related because of [5.2]. One can see this directly without the use of [5.2] by 
the following argument: Since ~brno = 0(j, k), gmo = Xgmo where X is some 
constant. Now let 3' be any path from rno to m and v, w be two vectors at rn. 

~m(V, w) = gmo(~T(v), ~1"(w) = Xgmo(a(m)~,T(v), a(m)~T(w)) 

= ~a(m)2gmo(~/T(v), ~,T(w)) 

= Xa(m)egm(v, w) (3.5) 

so ~ = Xa2g. 
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Now we assume gij = e2C~gi] so that 

~ k  = rjk  + ell]61c i + ~t k ~ /  -- Oqngni gjk (3.6) 

We also assume 7T =/3T 7 so that if v i is a parallel vector field along 7 then 
~v i will be paralM along 7 in F. The two equations expressing the parallelism 
are 

• k . i  j 7'v~/+ F/j7 u = 0 (3.7) 

and 

Subtracting these two equations we find 

(3~i(ln ~)ti)v k + (Olli~¢i)v k + (C~liVi)'~ k + CXlngnkvi4/Jgii = 0 (3.9) 

Using this equation we will show oqi = 0 at every point m inM. Thus c~ will be 
constant as desired. Suppose ~li 4= 0 at some point m. Then oqjg ii will be a 
nonzero vector. Thus there is a non-null vector v i at m such that 

0 =/= Otfjgjivl¢gik = Otli vk (3 . I  0) 

There is another non-null vector w x such that 

wXvl'g]x = 0 (3.1 i) 

since v] is non-null. Now let 7 be any curve with tangent wJat m. Let vJ be 
defined on this curve as the parallel transport of vJ at m along the curve. Thus 
the above equation holds for wJ = 4/J and 

0 = (4/X(ln ~)li + Otlig[i)vkwlgkl + (Otin Wn)viWjgi] 

=(Otl iv i )wk W t gk  l 

= (Olf iv i )wkwlgkl  (3.1 2) 

but wXwtgkt  @ 0 since w x was non-null and so oqi vi = 0 giving our needed 
contradiction. 

The basic idea of  this proof is that H partially determines the metric and 
partially determines the connection. Then it is seen that only one metric will 
satisfy both of  the fimitations. Thus, when working with R~jk as in Section 2 
one would first look for a way to determine P/~. The only identity involving 
the Riemann tensor and the connection is the Bianchi identity involving 
covariant derivatives. Thus it would seem reasonable that one should work 
with this identity to get a complete uniqueness theorem, and in fact this 
approach did work although it seems necessary to have the extra restriction on 
R~jk given in [2.2]. 
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4. Discussion 

In this Section we would like to discuss the significance the preceding work 
has in general relativity from a philosophical point of view. A fundamental 
problem in the general theory since it first was proposed has been that it does 
not seem to be compatible with Mach's principle. There are many aspects to 
Mach's principle. Let us first consider the particular aspect that is relevant to 
the results we have obtained here; we will then consider Mach's principle from 
a broader point of view. 

Let us suppose that we are given a test particle in a completely empty 
universe with no gravitation field and asked how this particle will move. One 
might at first say the particle will move in a straight line as would be demanded 
in the Minkowskian model. However a "rotating" metric 

ds 2 = - d t  2 +dR 2 +R2(dO + 0 0 dt) 2 +R2(sin(0 + tO0)) 2 d~ 2 (4.1) 

also has no gravitational field. This metric will have Coreolus forces and 
particles will not travel in straight lines. How does one choose between these 
two different situations? Another way of looking at the problem is as follows: 
In order to describe the motion of the particle we must first establish a co- 
ordinate system. Once having established a system how do we determine if we 
have picked an "inertial" system, a "rotating" system, or some other entirely dif- 
ferent system? Since we have no physical information to draw upon, there can 
be no way of resolving the problem. This poses a dilemma which can be formu- 
lated in the following mathematical way. There are gravitational fields (in this 
case R[/k = 0) which are compatible with more than one force law for the 
motion of particles (i.e., more than one connection). How does one choose the 
force law when all that one really has at one's disposal are the gravitational 
fields? 

Einstein dealt with this problem by making the following observation. The 
problem with our example is that a completely empty space is a physically 
impossible situation. In any realistic situation one must have matter in the 
universe and using this matter one can decide which frames are inertial and 
which are not. This idea translated into mathematical language would say that 
if one restricts oneself to gravitational fields that are "sufficiently non-zero" 
then there will in fact be a unique force law that corresponds to that field. 
This is nothing more than a part of  Mach's principle which says that the physics 
of the universe is determined by the matter in the universe (and thus by the 
gravitational fields also since they determine the matter distribution of the 
universe via Einstein's equations). [2.3] is a theorem which in fact gives con- 
ditions on R which assure that P will be unique. These conditions are very 
general and it seems they will be satisfied as long as the space-time is not 
allowed to be too empty. Thus this theorem says that by restricting ourselves 
to a class of realistic models this aspect of Mach's principle will be satisfied. 

Let us now make a precise list of several aspects of Mach's principle and 
review their status. The first principle is the one that is the general principle 
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we wish to consider. All the other principles can be considered as steps towards 
this principle. This principle says that the mass distribution of a universe com- 
pletely determines the physics of the universe: 

[4.1 ] Definition. Mach's principle 1 (Mach 1) applies to a class of space-times 
~ i f  for any two space-times in cg that have the same energy tensor Tii will 
also have the same connection F~. 

The principles that build up to this one may be listed as follows: 

[4.2] Definition. Mach's principle 2 (Mach 2) applies to cgif any two space- 
times in Cgwith the same R~jk have the same 1~. 

[4.3] Definition. Mach's principle 3 (Mach 3) applies to cgif any two space- 
times in ~ with the same Ti] have the same R~jk. 

[4.4] Definition. Mach's principle 4 (Mach 4) applies to cgif any space-time 
inCg with Rij = 0 satisfies R~jk = O. 

In order to make Mach's principle more compatible with general relativity 
one must look for a class cg of space-time that has Mach 1 and contains enough 
space-times to make reasonable physical models. 

Here we have given such a theorem for Mach 2. The restriction on spacetimes 
in this case seems to be so mild that this theorem will probably be adequate 
for Mach 2. In Ihrig, (1975) we gave a theorem for Mach 4 (see Ozsvath, (1962) 
for examples of spacetimes that do not satisfy Mach 4). 

In this theorem CCis taken to be a subclass of the periodic spacetimes (see 
Ihrig and Sen, 1974) which is a very restricted class (although sufficiently large to 
satisfy some physically desirable properties). There is work still left to be done 
to try to expand the cg for Math 4. 

However the most important unsolved (and largely unconsidered) problem 
is Much 3, One would hope that the classCg for Mach 4 would be sufficiently 
restrictive for Mach 3, but this problem remains unsolved. 

5. Appendix 

Here we would like to recall some notation and results (Ihrig, 1975a). First 
we establish notation for the Riemann tensor. We take 

R(x,  y ) z  = DxDyz - DyDxz - D [x,y] z (5. I) 

l In (Ihrig, 1975a) we defined Rii, k by 

~x--- 7 = R , ~x k (5.2) 
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since R~i k was only considered as a matrix with indices l and k (i and j being 
fixed). Since the R[j, k is not used here in this way we will return to the 
standard notation 

~ = R (  ~ ~ ) ~ (5.3) 

We also use 

Fti = ~x i F (5.4) 

where F is any function. If T is a tensor then 

TIIi= Do /axiT 

Now we will state the definition and theorem we use: 

(5.5) 

[5.1 ] Definition. Let R be a tensor of rank (3, 1) and let R be antisymmetric 
in two indices: 

R(v, w) = -R(w, ~) 

Then R is called total at m if 

(Rm(v,  w)lv, w E Tm(M) } = W 

generates a vector space of dimension n(n - 1)/2 where n = dimM. 

[5.2] Theorem. Let R be the Riemann tensor of some pseudo-metric. I fR  is 
total at m then gij is determined to within a conformal factor at m by the 
following equations (xij are independent variables). 

(a) Xgij = (w, xij)/(w, w) 1/2 

b 
(b) w = ~ wa, 

~=a+l 

(~ = (n - 1)n 3/2 

= a + n(n + 1)/2 

(C) Wee ---- W~/(Wa, t~a) 1/2 

wc~ =0  

(d) w~ = v~ - ~ (v~, w~)w~ 
~<~ 

~Xq 

(f) (xilh , xi2j2) = ~ili2 ~jlj2 

if w~ 4:0 

if wa = 0 

a < a  
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[5.3] Notation. Let R be as in the above theorem. Let 

Xgij = a ( n  ) 

which is determined by the above prescription. 
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